扫一扫 扫一扫 扫一扫 扫一扫 记得大学有一门课程叫《数据统计与分析》,难倒很多理科生。没想到毕业后,工作、生活处处都要用到,比如:
提示有些问题思考的角度不同,可能会有不同的答案,设计累了的同学可以换换脑子思考一下。 本篇文章主要介绍设计师在支持业务的过程中,可能会遇到的数据分析场景及应对的思路、方法,希望能给大家带来启发。 首先介绍一下数据分析的目标及用途,总的来说主要是用来发现问题、解决问题的。设计师用到比较多的情况有:
以上三种情况中,只有指导设计的分析过程看起来有些复杂,它基本包含了前两种情况的分析,下面重点针对第三种情况,介绍一下数据分析的思路。 确定目标刚开始,需要先明确数据分析是为了什么,这个目标最好是可量化验证的。比如发布改版的目标是提高发布成功率还是提高发布字段的填写率,从而丰富信息展现?两种目标的数据分析过程完全不同,甚至结论可能会是两种相反的设计方向。有的产品可能要求两个目标都达到,这个时候设计师需要两个目标都考虑,必要的时候在有冲突的设计点上做权衡。 问题预设在明确了总目标后,需要在总目标的基础之上进行拆解,分析影响目标的因素可能都有哪些,哪些可能还有提升的空间,这个过程就是问题预设。拆解目标、分析可能性的方式有很多,列出一些,供大家参考交流: 1. 转化漏斗 按照时间顺序,列出用户从开始到达成目标整个过程中的关键点,即任何可能操作失败导致用户流失的触点,一一列举,绘制成转化漏斗。转化漏斗本身就可以作为预设的问题,另外,还可以在转化漏斗的基础上发散影响转化漏斗的问题,进行验证。这种方法作者用的多一些,它在解决流程明确的需求中比较清晰,可以系统化的列出各个转化环节的情况。 2. 头脑风暴 组织头脑风暴,往往也会发散出可能性较高的问题预设,成员间思维碰撞,互相启发,也会带来很多新思路。组织头脑风暴的方法有很多,本文篇幅有限,就不赘述了。 别急着画稿!来看这份全面细致的头脑风暴指南编者按:画产品原型之前来次脑爆是很多设计团队的必修科目,今天这篇好文总结了常见的头脑风暴方法,以及每个方法所需的材料/工作人员/适用场合/优劣势/实施步骤等,非常详细,文内附上一篇实战教程,帮你更快掌握脑爆的5个正确姿势,一起来收! 阅读文章 >3. 用户调研 通过用户访谈或可用性测试等用研方法,也可以搜集到很多问题,通过数据分析对问题发生的概率及影响程度进行定量验证后,针对发生频繁、影响用户量大的问题优先设计解决方案,效果更直接,效率更高。有些问题的影响程度难以通过数据量化,可以考虑通过调研问卷的方式进行验证;如果时间及资源上来不及上线问卷,也可以根据经验作出判断,设计简单的方案小成本上线验证,如果上线后衡量目标的核心指标有所提升,说明预设的问题方向无误。 都说设计师要了解用户,那么你要选哪种用研方法?编者按:用户研究的方法有很多,选择适合自己的方法的前提条件是你得了解各种方法的优劣。 阅读文章 >4. 专家走查 成立专家组进行问题走查,使用得也比较普遍。可以设定几个典型任务,带着任务进行走查。笔者推荐将用户分层,每类用户随机抽取几个用户的行为路径,专家进行真实场景还原,这样走查的问题可能会更加真实。 请注意,问题预设环节在于发散,认为可能影响目标的因素都可以考虑进去。另外如果发散的问题比较多,导致验证工作量较大,也可以根据经验判断预设问题对目标影响的大小,加以排序,按照优先级进行验证。 确定数据指标根据预设的问题,确定衡量问题的数据指标都有哪些。现实情况会因为历史原因、技术实现成本等等,并不是所有数据指标都适合观测。所以,衡量同一个问题,可能需要发散多条思路进行验证。 比如在分析表单类产品时,目标是提升表单转化率,预设问题是各个表单控件可能会有填答障碍。衡量控件是否有填答障碍,可以有以下几个思路:
数据指标有很多,每类产品的指标也会不尽相同,难以穷举,观测哪些指标需要具体问题具体分析。列几个常用的供参考:点击率、CTR、使用时长、链接转化率。 需要注意的是:
一般来说,如何验证预设问题,可以和更专业的产品经理或数据分析师商量,设计师主动参与这个过程,一方面可以帮助团队发散更多思路,另一方面理解数据分析过程有助于发散设计解决方案。 收集数据收集数据一般也可以有更专业的产品经理或数据分析师,设计师了解数据收集的过程,可以了解可能影响结论的因素都有哪些,尽量规避风险,拿到准确可靠的数据。 1. 数据观测时长: 根据产品特性,规律波动的数据以波动周期的整数倍为观测时长即可。如以周为周期规律性波动的以周为单位观测,一般为一周到两周。 尽量避免节假日、活动期间、淡旺季切换周期内观测数据得出结论,因为数据波动大且影响因素不确定。 2. 数据观测方法: 如果要做数据对比,确定对比方式,AB 测和改版前后对比,确保选择准确性及可行性佳的方式。如果要做 AB 测,则需要避免多个 AB 测交叉同时做,另外流量配比的多少也可能影响结果,一般采用 50%:50% 的流量配比。 如果采用改版前后对比的方式,则需要在产品表现平稳的时间周期内,避免旺季淡季变化周期内观测。不推荐用这种方式对比,影响因素较多,难以得出较为准确的结论。 3. 数据量级预估: 样本量:一要有代表性,一般数据统计采取全样本的方式,没有这类问题;有些调研性质的数据,需要通过人工处理,选取部分数据进行分析即可,此时要求选取数据要占总数据量的一定比例,才具有代表性;二是样本基数要足够说明问题,量级太低,结果波动太大,可以调高量级或拉长观测周期,再得出结论,否则没有可信度。 转化量:在样本基数足够的基础上,如果转化量级太低,也可能转化量在小范围波动时,转化率波动较大,导致数据不准确,可信度低。此时应考虑放弃观测转化率,寻找其他方式。 数据分析在收集到数据后,根据设定的数据指标进行数据统计,此时可能用到数据透视表、可视化数据图表等等。专业的数据分析方法有很多,设计师掌握求和(SUM)、求平均值(AVERAGE)两个基础公式,以及饼图、柱形图、条形图、折线图、散点图几种可视化图表,应该就够用了。 需要注意的是:
得出结论因为前期对于目标及问题分析的比较清晰了,在数据统计出来之后,有些结论就呼之欲出了。有些需要根据经验判断数据变化是否在预期范围内,比如:
如果数据超出预期,需要分析可能原因是什么?是否合理?
结语可以看出虽然文章标题名字是数据分析,但是内容更偏重设计过程中如何通过数据挖掘问题,以及在数据分析中遇到问题都有哪些解决思路。以上是笔者从历次项目交互设计总结出来的经验与方法,希望能给各位设计师带来启发,有疑问的读者欢迎留言讨论。 交互设计师必修课:数据分析的原则面对一大堆看似杂乱的数据,如何进行信息提取与数据加工,从中获取自己想要的信息,并应用这些信息,有理有据的进行需求的讨论、最终设计决策的推进,这是每一个交互设计师必修的课程。 阅读文章 >欢迎关注「58UXD」的微信公众号: 手机扫一扫,阅读下载更方便˃ʍ˂ |
@版权声明
1、本网站文章、帖子等仅代表作者本人的观点,与本站立场无关。
2、转载或引用本网版权所有之内容须注明“转自(或引自)网”字样,并标明本网网址。
3、本站所有图片和资源来源于用户上传和网络,仅用作展示,如有侵权请联系站长!QQ: 13671295。